"Activating Transcription Factor 6/*genetics"

The peroxisomal enzyme, FAR1, is induced during ER stress in an ATF6-dependent manner in cardiac myocytes.

Although peroxisomes have been extensively studied in other cell types, their presence and function have gone virtually unexamined in cardiac myocytes. Here, in neonatal rat ventricular myocytes (NRVM) we showed that several known peroxisomal …

Proteostasis and Beyond: ATF6 in Ischemic Disease.

Endoplasmic reticulum (ER) stress is a pathological hallmark of numerous ischemic diseases, including stroke and myocardial infarction (MI). In these diseases, ER stress leads to activation of the unfolded protein response (UPR) and subsequent …

Pharmacologic ATF6 activation confers global protection in widespread disease models by reprograming cellular proteostasis.

Pharmacologic activation of stress-responsive signaling pathways provides a promising approach for ameliorating imbalances in proteostasis associated with diverse diseases. However, this approach has not been employed in vivo. Here we show, using a …

Pharmacologic ATF6 activating compounds are metabolically activated to selectively modify endoplasmic reticulum proteins.

Pharmacologic arm-selective unfolded protein response (UPR) signaling pathway activation is emerging as a promising strategy to ameliorate imbalances in endoplasmic reticulum (ER) proteostasis implicated in diverse diseases. The small molecule …

Activation of the ATF6 branch of the unfolded protein response in neurons improves stroke outcome.

Impaired function of the endoplasmic reticulum (ER stress) is a hallmark of many human diseases including stroke. To restore ER function in stressed cells, the unfolded protein response (UPR) is induced, which activates 3 ER stress sensor proteins …

Protein disulfide isomerase-associated 6 is an ATF6-inducible ER stress response protein that protects cardiac myocytes from ischemia/reperfusion-mediated cell death.

Proper folding of secreted and transmembrane proteins made in the rough endoplasmic reticulum (ER) requires oxygen for disulfide bond formation. Accordingly, ischemia can impair ER protein folding and initiate the ER stress response, which we …

Regulation of microRNA expression in the heart by the ATF6 branch of the ER stress response.

A nodal regulator of endoplasmic reticulum stress is the transcription factor, ATF6, which is activated by ischemia and protects the heart from ischemic damage, in vivo. To explore mechanisms of ATF6-mediated protection in the heart, a whole-genome …

Roles for endoplasmic reticulum-associated degradation and the novel endoplasmic reticulum stress response gene Derlin-3 in the ischemic heart.

RATIONALE: Stresses, such as ischemia, impair folding of nascent proteins in the rough endoplasmic reticulum (ER), activating the unfolded protein response, which restores efficient ER protein folding, thus leading to protection from stress. In part, …

Ischemia activates the ATF6 branch of the endoplasmic reticulum stress response.

Stresses that perturb the folding of nascent endoplasmic reticulum (ER) proteins activate the ER stress response. Upon ER stress, ER-associated ATF6 is cleaved; the resulting active cytosolic fragment of ATF6 translocates to the nucleus, binds to ER …

Mesencephalic astrocyte-derived neurotrophic factor is an ischemia-inducible secreted endoplasmic reticulum stress response protein in the heart.

The endoplasmic reticulum (ER) stress response (ERSR) is activated when folding of nascent proteins in the ER lumen is impeded. Myocardial ischemia was recently shown to activate the ERSR; however, the role of this complex signaling system in the …