"endoplasmic reticulum"

Mesencephalic astrocyte-derived neurotrophic factor is an ER-resident chaperone that protects against reductive stress in the heart.

We have previously demonstrated that ischemia/reperfusion (I/R) impairs endoplasmic reticulum (ER)-based protein folding in the heart and thereby activates an unfolded protein response sensor and effector, activated transcription factor 6α (ATF6). …

The ER Unfolded Protein Response Effector, ATF6, Reduces Cardiac Fibrosis and Decreases Activation of Cardiac Fibroblasts.

Activating transcription factor-6 α (ATF6) is one of the three main sensors and effectors of the endoplasmic reticulum (ER) stress response and, as such, it is critical for protecting the heart and other tissues from a variety of environmental …

The ER Unfolded Protein Response Effector, ATF6, Reduces Cardiac Fibrosis and Decreases Activation of Cardiac Fibroblasts.

Activating transcription factor-6 α (ATF6) is one of the three main sensors and effectors of the endoplasmic reticulum (ER) stress response and, as such, it is critical for protecting the heart and other tissues from a variety of environmental …

ATF6 Regulates Cardiac Hypertrophy by Transcriptional Induction of the mTORC1 Activator, Rheb.

RATIONALE: Endoplasmic reticulum (ER) stress dysregulates ER proteostasis, which activates the transcription factor, ATF6 (activating transcription factor 6α), an inducer of genes that enhance protein folding and restore ER proteostasis. Because of …

Integrating ER and Mitochondrial Proteostasis in the Healthy and Diseased Heart.

The integrity of the proteome in cardiac myocytes is critical for robust heart function. Proteome integrity in all cells is managed by protein homeostasis or proteostasis, which encompasses processes that maintain the balance of protein synthesis, …

Pharmacologic ATF6 activation confers global protection in widespread disease models by reprograming cellular proteostasis.

Pharmacologic activation of stress-responsive signaling pathways provides a promising approach for ameliorating imbalances in proteostasis associated with diverse diseases. However, this approach has not been employed in vivo. Here we show, using a …

Pharmacologic ATF6 activating compounds are metabolically activated to selectively modify endoplasmic reticulum proteins.

Pharmacologic arm-selective unfolded protein response (UPR) signaling pathway activation is emerging as a promising strategy to ameliorate imbalances in endoplasmic reticulum (ER) proteostasis implicated in diverse diseases. The small molecule …

ER Protein Quality Control and the Unfolded Protein Response in the Heart.

Cardiac myocytes are the cells responsible for the robust ability of the heart to pump blood throughout the circulatory system. Cardiac myocytes grow in response to a variety of physiological and pathological conditions; this growth challenges …

Hrd1 and ER-Associated Protein Degradation, ERAD, are Critical Elements of the Adaptive ER Stress Response in Cardiac Myocytes.

RATIONALE: Hydroxymethyl glutaryl-coenzyme A reductase degradation protein 1 (Hrd1) is an endoplasmic reticulum (ER)-transmembrane E3 ubiquitin ligase that has been studied in yeast, where it contributes to ER protein quality control by ER-associated …

Roles for ATF6 and the sarco/endoplasmic reticulum protein quality control system in the heart.

The hypertrophic growth of cardiac myocytes is a highly dynamic process that underlies physiological and pathological adaptation of the heart. Accordingly, a better understanding of the molecular underpinnings of cardiac myocyte hypertrophy is …